Asymmetric synthesis of (3S)-2,3,4,5-tetrahydropyridazine-3carboxylic acid and its methyl ester \dagger

Ian H. Aspinall, ${ }^{,}$Phillip M. Cowley, ${ }^{a}$ Glynn Mitchell, ${ }^{b}$ Clive M. Raynor ${ }^{a}$ and
Richard J. Stoodley *a
${ }^{a}$ Department of Chemistry, UMIST, PO Box 88, Manchester, UK M60 1QD
${ }^{b}$ Zeneca Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire, UK RG12 6EY

Received (in Cambridge, UK) 1st July 1999, Accepted 23rd July 1999

Methyl (2E,4E)-5-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)penta-2,4-dienoate 16a, assembled by a Wittig condensation of tributyl(methoxycarbonylmethylene)phosphorane 19a and ($2 E$)-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-dglucopyranosyloxy)propenal 20, displays excellent $R e$-face reactivity towards diethyl azodicarboxylate 15a, bis(2,2,2trichloroethyl) azodicarboxylate 15b, dibenzyl azodicarboxylate 15c, diisopropyl azodicarboxylate 15d and di-tertbutyl azodicarboxylate $\mathbf{1 5 e}$ in thermal hetero-Diels-Alder reactions to give the cycloadducts $\mathbf{1 7 a}-\mathbf{e}$. When subjected to the action of hydrogen over palladium-carbon, the cycloadducts $\mathbf{1 7 a}, \mathbf{1 7 b}, \mathbf{1 7 d}$ and 17 e undergo hydrogenation of their olefinic bonds to give the dihydro derivatives 18a, 18b, 18d and 18e; in the case of the cycloadduct $\mathbf{1 7 c}$, hydrogenolysis of the benzyloxycarbonyl group also occurs to give methyl ($3 S$)-2,3,4,5-tetrahydropyridazine-3carboxylate $\mathbf{1 b}$ with an ee of 98% and 2,3,4,6-tetra- O-acetyl- β-D-glucopyranose $\mathbf{2 2}$. Compound $\mathbf{1 b}$, with an ee of 98%, is also available from the dihydro derivative 18e by the action of trifluoroacetic acid; however, under the acidic conditions, a condensation reaction between the aglycone $\mathbf{1 b}$ and the glycone $\mathbf{2 2}$ competes to give methyl ($3 S$)-2,3,4,5-tetrahydro-2-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyl)pyridazine-3-carboxylate $\mathbf{2 5}$.
Sodium ($3 S$)-2,3,4,5-tetrahydropyridazine-3-carboxylate $\mathbf{1 c}$, with an ee of 99%, is available from the ester $\mathbf{1 b}$ by a saponification reaction. The trifluoroacetic acid salt 27, with an ee of 95%, is obtained from benzyl $(3 S, 6 S)$ -1,2-bis(tert-butoxycarbonyl)-1,2,3,6-tetrahydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)pyridazine-3carboxylate $\mathbf{1 7 g}$ by a hydrogenation-trifluoroacetolysis sequence. A hetero-Diels-Alder reaction involving the benzyl pentadienoate $\mathbf{1 6 c}$ and di-tert-butyl azodicarboxylate $\mathbf{1 5 e}$ provides the cycloadduct $\mathbf{1 7 g}$.

Introduction

2,3,4,5-Tetrahydropyridazine-3-carboxylic acids are an interesting class of cyclic α-hydrazono acids. The ($3 S$)-isomer of the parent compound, i.e. 1a, was first reported in 1981 as an alkaline hydrolysis product of antrimycin A^{2} (a linear hexapeptide with antitubercular activity). Subsequently, the hydrazono acid 1a was shown to be a constituent of several other antrimycins ${ }^{3}$ and of aurantimycin B^{4} (a cyclic hexadepsipeptide with antibacterial activity). Both compound 1a and its enantiomer are present in L-365,209 ${ }^{5}$ (a semi-synthetic cyclic hexapeptide that acts as an oxytocin antagonist) and in aurantimycin C. ${ }^{4}$ The $(4 S)$-hydroxy and $(4 S)$-acetoxy derivatives, i.e. $\mathbf{2 a}$ and $\mathbf{2 b}$, are components of luzopeptins ${ }^{6}$ (cyclic decadepsipeptides with antitumour properties). 4-Acetoxy and 4-(trans-2-methylcyclopropylcarbonyloxy) derivatives of 2,3,4,6-tetrahydropyridazine3 -carboxylic acid (of unreported absolute stereochemistry) are present in quinoxapeptins ${ }^{7}$ (relatives of luzopeptins with HIV reverse transcriptase inhibitory properties).

At the commencement of our studies, the only synthesis of a tetrahydropyridazinecarboxylic acid derivative was that of Hughes and Clardy, ${ }^{8}$ who had prepared the hydroxy acid 2a by the route outlined in Scheme 1. Thus, the epoxy alcohol 3 (prepared by a Sharpless asymmetric epoxidation) was transformed

[^0]
into the glycidic acid salt $\mathbf{4}$, which underwent a highly regioselective hydrazinolysis to give compound 5; an acid-induced cyclocondensation reaction then led to the target 2a. Recently, a second synthesis of the hydroxy acid 2a was described by Genêt's group ${ }^{9}$ (Scheme 2). It also featured an acid-induced cyclocondensation reaction in which the product of ozonolysis of the alkene 7 was transformed into the tetrahydropyridazine 2c; a highly anti-selective electrophilic amination with di-tertbutyl azodicarboxylate was used in the assembly of compound 7 from the hydroxy ester 6 (obtained by a Noyori-type asymmetric reduction of the corresponding keto ester). Ciufolini and Xi prepared the (\pm)-hydroxy ester $\mathbf{2 d}$ using a similar approach. ${ }^{10}$ The first synthesis of a derivative of the parent acid 1a was reported by Nakamura and Shin, ${ }^{11}$ who prepared the ester 1b by an acid-induced cyclocondensation reaction. Thus, as shown in Scheme 3, the cyclisation precursor 10 was obtained by methanolysis of the imide $\mathbf{9}$, assembled from compound $\mathbf{8}$ using Evans' electrophilic amination technology. A similar approach was adopted by Schmidt and Riedl ${ }^{12}$ in their synthesis of the ester $\mathbf{1 b}$.

In earlier work, we had shown that the 2,3,4,6-tetra- O-acetyl-β-D-glucopyranosyl unit conferred a useful level of Re-face reactivity on 1-oxybuta-1,3-dienes in Diels-Alder cycloadditions with cyclic electron-deficient dienophiles under thermal

2a
Scheme 2

Scheme 3
conditions. ${ }^{13-15}$ For example, the diene 12 reacted with N phenylmaleimide 11 in benzene to give an 86:14 mixture of the endo-cycloadducts 13 and 14 (Scheme 4), from which the major

Scheme 4
diastereomer $\mathbf{1 3}$ was isolated in 59% yield after crystallisation. ${ }^{14}$ Based on such findings, we hoped that the sequence outlined in Scheme 5 would provide a new route to pyridazinecarboxylic acid derivatives of type $\mathbf{1}$. Thus, the reaction of azodicarboxylates of type $\mathbf{1 5}$ with dienes of type $\mathbf{1 6}$ should give cycloadducts of type 17; removal of the N-protecting groups from hydrogenation products of type $\mathbf{1 8}$ should then afford targets of type $\mathbf{1}$. Clearly, the success of such a venture would require an efficient assembly of dienes of type 16, an ability to isolate cycloadducts of type $\mathbf{1 7}$ (or their dihydro derivatives of type 18) in a nearstereopure state, and a capacity to remove the N-protecting groups from compounds of type $\mathbf{1 8}$. We now report the successful implementation of this plan.

Scheme 5 R* as defined in Scheme 4.

Results and discussion

Initially, the synthesis of the diene 16a was undertaken. The route adopted, shown in Scheme 6, was based upon that used

Scheme 6 R* as defined in Scheme 4.
by Maddaluno and d'Angelo ${ }^{16}$ to assemble achiral relatives of the diene 16a. Thus, in dichloromethane, the phosphorane 19a reacted with the propenal $2 \mathbf{2 0}^{14,17}$ to give a $4: 1$ mixture of the dienes 16a and 21a; following chromatography and crystallisation, the diene $\mathbf{1 6 a}$ was isolated in 61% yield.
The diene 16a was found to react slowly with diethyl azodicarboxylate 15a ($250 \mathrm{~mol} \%$) in hot ethyl acetate (ca. $70^{\circ} \mathrm{C}$; 3 days) to give an adduct in 82% yield after crystallisation. The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the product (in CDCl_{3}) showed some broad signals at ambient temperature; however, at $55^{\circ} \mathrm{C}$, mainly sharp signals were observed. The latter spectrum left little doubt that the adduct was a cycloadduct, which was provisionally assigned the stereostructure 17a. Presumably, the signal broadening is due to a high barrier to ring inversion caused by an interaction between the adjacent urethane groups; similar effects have been noted with simple 1,2-bisalkoxy-carbonyl-1,2,3,6-tetrahydropyridazines. ${ }^{18,19}$ By operating in hot toluene ($c a .100^{\circ} \mathrm{C}$), it was possible to effect the cycloaddition in 6 h using a stoichiometric quantity of the azodicarboxylate 15a; the cycloadduct 17 a was then obtained in 66% yield after crystallisation.
The isolation of a single cycloadduct in good yield indicated that the hetero-Diels-Alder reaction displayed significant stereoselectivity. Indeed, when the crude product of the cycloaddition reaction (conducted in PhMe) was examined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (at $55^{\circ} \mathrm{C}$), there was no evidence for the presence of a second cycloadduct

The diene 16a also reacted with bis-2,2,2-trichloroethyl azodicarboxylate $\mathbf{1 5 b}$ ($100 \mathrm{~mol} \%$) ($\mathrm{PhMe} ; 100^{\circ} \mathrm{C} ; 7 \mathrm{~h}$) to give the cycloadduct 17b (75% yield after crystallisation), with dibenzyl azodicarboxylate 15 c ($250 \mathrm{~mol} \%$) ($\mathrm{PhMe} ; 90^{\circ} \mathrm{C}$; 18 h) to afford the cycloadduct $\mathbf{1 7 c}$ (87% after chromatography), with diisopropyl azodicarboxylate $15 \mathrm{~d}(100 \mathrm{~mol} \%)\left(\mathrm{PhMe} ; 100^{\circ} \mathrm{C}\right.$; 7 h) to furnish the cycloadduct $\mathbf{1 7 d}$ (57% yield after crystallisation), and with di-tert-butyl azodicarboxylate 15e ($300 \mathrm{~mol} \%$)
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; reflux; 5 days \ddagger to provide the cycloadduct $\mathbf{1 7 e}$ (77% yield after chromatography). In all cases, the ${ }^{1} \mathrm{H}$ NMR spectra of the cycloadducts showed broad signals at ambient temperature; however, at $100^{\circ} \mathrm{C}$, mainly sharp signals were observed that were consistent with diastereomeric purity.

In the presence of hydrogen and palladium-carbon in ethyl acetate, the cycloadduct 17 a was readily transformed into the dihydro derivative 18a (93% yield after crystallisation). Similarly, the cycloadduct $\mathbf{1 7 b}$ afforded the dihydro derivative 18b (84% yield after crystallisation), the cycloadduct $\mathbf{1 7 d}$ gave rise to the dihydro derivative 18d (82% yield after crystallisation) and the cycloadduct 17 e provided the dihydro derivative $\mathbf{1 8 e}$ (84% yield). As in the case of their precursors, the dihydro derivatives showed broad signals in the ${ }^{1} \mathrm{H}$ NMR spectra at ambient temperature; § however, at $90-100^{\circ} \mathrm{C}$, sharp signals were observed.

It was hoped that, under the hydrogenation conditions, the cycloadduct 17 c would give rise to a $1: 1$ mixture of the target 1b and 2,3,4,6-tetra-O-acetyl-D-glucopyranose 22 (Scheme 7). In the event, mainly a 5:3:1 mixture of materials was produced according to ${ }^{1} \mathrm{H}$ NMR spectroscopy. The two more prevalent components were considered to be the expected products, i.e. the glycone $\mathbf{2 2}^{20}$ (as a 1:1 mixture of α - and β-anomer) and the target $\mathbf{1 b}$; ${ }^{11}$ the third component was considered to be the pyridazine 24. ${ }^{21}$ Column chromatography led to the isolation of compound 22 (as a $2: 1$ mixture of the α - and β-anomers) in essentially quantitative yield, compound $\mathbf{1 b}$ in 37% yield and compound 24 in a slightly impure state in $c a .13 \%$ yield. The specific rotation of compound $\mathbf{1 b}\left\{[a]_{\mathrm{D}}+100(\mathrm{MeOH})\right\}$ ब was the same in sign but smaller in magnitude to that published $\left\{[a]_{\mathrm{D}}+139(\mathrm{MeOH})\right\},{ }^{11}$ corroborating the stereochemical assignments.
Presumably, under the hydrogenation conditions, compound 17 c undergoes two competing reactions. In the major pathway, hydrogenation of the olefinic bond to give the saturated-ring intermediate 18c is followed by hydrogenolysis of the benzyl groups, decarboxylation and elimination to give the target $\mathbf{1 b}$ and the glycone 22. In the minor pathway, hydrogenolysis of the benzyl groups, decarboxylation and elimination affords the glycone 22 and the dihydropyridazine 23; dehydrogenation of compound $\mathbf{2 3}$ then produces the pyridazine $\mathbf{2 4}$ (Scheme 7).

It was envisaged that the target ester $\mathbf{1 b}$ would be accessible from the bis(tert-butoxycarbonyl) derivative 18e under acidic conditions. Indeed, treatment of compound 18e with trifluoroacetic acid (TFA) and subjection of the product to column chromatography resulted in the isolation of the glycone 22 (as a 3:1 mixture of α - and β-anomer) and the tetrahydropyridazine 1b, $[a]_{D}+124(\mathrm{MeOH})$, as an oil in 57% yield. Although essentially pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the sample failed to give an acceptable elemental analysis. In a repeat of the aforecited

[^1]

Scheme 7 R* as defined in Scheme 4.
reaction, performed under slightly different conditions (see Experimental section), three products were obtained after column chromatography. The first fraction (57% yield) was the tetraacetate 22 (as a $3: 1$ mixture of α - and β-anomer). The second fraction (31% yield) was identified as compound $\mathbf{2 5}$ on the basis of its spectral and analytical properties. In particular, the ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of a broad triplet $(J 4 \mathrm{~Hz})$ at $\delta 4.14$, attributed to the 3-proton of the tetrahydropyridazine ring, a broad singlet at $\delta 6.68$, ascribed to the 6 proton of the tetrahydropyridazine ring, and a doublet ($J 9 \mathrm{~Hz}$) at $\delta 4.69$, assigned to the anomeric 1^{\prime}-proton of the sugar unit. The third fraction (48% yield), $[a]_{\mathrm{D}}+108(\mathrm{MeOH})$, was compound $\mathbf{1 b}$.

Presumably, compound 25 arises from the tetrahydropyridazine $\mathbf{1 b}$ and the tetraacetate $\mathbf{2 2}$ by a condensation reaction, induced by the acidic conditions.

Seeking to streamline the synthesis of compound $\mathbf{1 b}$, the diene 16a was heated with the azodicarboxylate 15 e ($300 \mathrm{~mol} \%$) and the crude product was subjected to the sequential actions of hydrogen over palladium-carbon, TFA, and methanol containing toluene- p-sulfonic acid (to convert 22 into D-glucose); a simple work-up (involving partitioning the product between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aq. NaHCO_{3} and evaporation of the organic phase) gave the tetrahydropyridazine $\mathbf{1 b},[a]_{\mathrm{D}}+86(\mathrm{MeOH})$, in a reasonably pure state in $c a .20 \%$ overall yield (based on the diene 16a).

Fears that the disparate optical rotations of samples of the tetrahydropyridazine $\mathbf{1 b}$ reflected differing degrees of enantiomeric purity were dispelled by derivatisation and HPLC studies. Thus, samples of the tetrahydropyridazine $\mathbf{1 b}$, with $[a]_{\mathrm{D}}$ values of +124 and $+86(\mathrm{MeOH})$, were each converted into the $2,4-$ dinitrophenyl (DNP) derivative 26a ${ }^{11}$ [by sequential reactions with $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}$ in MeOH and 2,4-dinitrofluorobenzene in EtOH]; HPLC analyses ${ }^{22}$ established that the samples possessed ees of 98%.

Clearly, the tetrahydropyridazine 1b had been produced in states of high enantiomeric purity and the diene 16a had displayed excellent $R e$-face selectivity in its hetero-Diels-Alder reactions with azodicarboxylates of type 15.
Finally, efforts were made to prepare the parent acid 1a. Saponification of the ester $\mathbf{1 b}\left\{[a]_{\mathrm{D}}+124(\mathrm{MeOH})\right\}$ with sodium hydroxide in THF afforded mainly the sodium salt of
the desired product in high yield. Athough only characterised by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the salt 1 c was converted into the DNP derivative 26a [by sequential reactions with $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}$ in HOAc , 2,4-dinitrofluorobenzene and NaHCO_{3} in aq. EtOH , and $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in CHCl_{3}], which was shown to possess an ee of 99%. Clearly, no racemisation accompanied the saponification reaction.

It was envisaged that the acid $\mathbf{1 a}$, or its trifluoroacetic acid salt 27 , would be available more efficiently from the hexahydropyridazine $\mathbf{1 8 f}$. The diene $\mathbf{1 6 b}$ was readily synthesised (54% yield after crystallisation) from the reaction of the phosphorane 19b with the propenal $\mathbf{2 0}$. However, its reaction with the azodicarboxylate 15e ($320 \mathrm{~mol} \%$) in refluxing toluene (3 days) was sluggish and accompanied by significant decomposition (as evidenced by the production of $\mathbf{2 2}$); following column chromatography, the cycloadduct $\mathbf{1 7 f}$ was isolated in only 48% yield. Although the hydrogenation reaction was uneventful, producing compound $\mathbf{1 8 f}$ in 86% yield, the trifluoroacetolysis reaction was not examined because of the relatively poor overall yield of compound $\mathbf{1 8 f}$.

A more satisfactory outcome resulted when the diene $\mathbf{1 6 c}$ (prepared in 62% yield after chromatography and crystallisation from the reaction of the phosphorane 19c and the propenal 20) was allowed to react with the azodicarboxylate $\mathbf{1 5 e}$ ($340 \mathrm{~mol} \%$). In hot toluene ($c a .85^{\circ} \mathrm{C}$; 5 days), the cycloadduct $\mathbf{1 7 g}$ was produced in 76% yield after chromatography. It was transformed into the acid $\mathbf{1 8 h}(69 \%$ yield after crystallisation) by the action of hydrogen over 10% palladium-carbon. In the presence of TFA, compound $\mathbf{1 8 h}$ afforded a $1: 1$ mixture of the tetraacetylglucose 22 (as a $3: 1$ mixture of α - and β-anomers) and the salt 27 ; a simple work-up (in which the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was concentrated) afforded the salt $27,[a]_{\mathrm{D}}+62(\mathrm{MeOH})$, in 98% yield. The sample was transformed into the DNP derivative 26a, which possessed an ee of 95%.

The aforecited findings are of interest in a number of respects. First, although the reaction of dienes with azo dienophiles has been extensively studied, ${ }^{23}$ there are few examples of such hetero-Diels-Alder reactions that involve dienes bearing detachable stereodirectors. ${ }^{24}$ Secondly, the excellent Re-face selectivity displayed by the dienes $\mathbf{1 6 a - c}$ in the cycloaddition reactions is notable, considering that acyclic dienophiles are involved (earlier, we found ${ }^{14}$ that the diastereofacial reactivity of the diene $\mathbf{1 2}$ was poorer towards tetracyanoethylene than towards N-phenylmaleimide). Thirdly, it is worth pointing out that the absolute stereochemical outcome of the cycloaddition reactions is in accord with expectations based upon our previously proposed model. ${ }^{13,14,25}$ Fourthly, the array of reactive functionality present in cycloadducts of type 17 offers opportunities for extensive synthetic manipulations. Finally, a reasonably practical route to compounds $\mathbf{1 b}$ and $\mathbf{2 7}$ is available as a consequence of the work.

Experimental

Dry solvents, referred to in the ensuing experiments, were prepared as follows: dichloromethane was distilled off calcium hydride; ethyl acetate was allowed to stand over $5 \AA$ molecular sieves; toluene was distilled from sodium and benzophenone. Light petroleum refers to that fraction boiling in the range $35-60^{\circ} \mathrm{C}$. Diazomethane was generated from Diazald and potassium hydroxide. ${ }^{26}$

The progress of reactions was monitored by TLC, using Merck plastic or aluminium sheets coated with silica gel (60 F_{254}; chromatograms were initially examined under UV light (Mineralight UVG2-58 lamp) and visualised with a p-anisaldehyde stain [plates were sprayed with p-MeOC ${ }_{6} \mathrm{H}_{4} \mathrm{CHO}$-conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$-EtOH ($1: 4: 95$) and heated]. Column chromatography was effected, under positive pressure from a compressed air line, with Crossfield Sorbsil C60 flash silica. HPLC analyses were
carried out using a Chiralcel OD column $(25 \times 0.46 \mathrm{~cm})$, a Kontron 420 pump, a Rheodyne 7125 injector and a Kontron 742 UV detector; data were analysed with Kontron software.

Evaporations were conducted under reduced pressure (using a water-pump or an oil-pump) at $\leq 40^{\circ} \mathrm{C}$ with a Buchi rotary evaporator (fitted with a water or $\mathrm{Me}_{2} \mathrm{CO}$-solid CO_{2} condenser). Mps were determined with a Buchi 512 melting point apparatus and are uncorrected. Specific optical rotations, given in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$, were measured at ca. $20^{\circ} \mathrm{C}$ using a Thorn Automation Type 243 or an Optical Activity 1000 polarimeter with a cell of path length 0.1 dm . Carbon, hydrogen and nitrogen contents were determined with a Carlo Erba Model 1108 analyser; chlorine content was measured by oxygen combustion followed by automatic argentometric titration on a Mettler DL25 titrator. A Perkin-Elmer Lambda 15 spectrometer was used to determine UV spectra; extinction coefficients (ε) are presented in $\mathrm{cm}^{2} \mathrm{mmol}^{-1}$. IR Spectra were recorded using a Perkin-Elmer 783 spectrometer. NMR Spectra were measured using a Bruker AC 300 or a Bruker AM 400 [with distortionless enhancement by polarisation transfer (DEPT) editing for ${ }^{13} \mathrm{C}$ spectra]; J-values and separations are given in Hz . Proton assignments were supported by COSY 45° experiments. FAB Mass spectra $\left(m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}\right.$ as matrix) were measured using a Kratos MS 50 spectrometer; EI and $\mathrm{CI}\left(\mathrm{NH}_{3}\right.$ as carrier gas) were determined on a VG 7070 instrument. High resolution mass spectra were recorded on a Kratos Concept IS spectrometer.

Diene syntheses

General procedure. A solution of tributylphosphine (15.0 $\left.\mathrm{cm}^{3}, 60 \mathrm{mmol}\right)$ and the requisite α-bromoacetic acid ester (60 mmol) in dry toluene $\left(60 \mathrm{~cm}^{3}\right)$ was stirred for 18 h and then concentrated. The resultant phosphonium salt was dissolved in dichloromethane $\left(75 \mathrm{~cm}^{3}\right)$ and the solution was washed with aq. sodium hydroxide (ca. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \times 60 \mathrm{~cm}^{3}$) followed by water and dried $\left(\mathrm{MgSO}_{4}\right)$.

The aforecited solution was added to a solution of the propenal $20(20.0 \mathrm{~g}, 50 \mathrm{mmol})$ in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ and the mixture was left for 18 h . Concentration gave a residue, which was washed with hexanes $\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and then purified in the manner described.

Methyl (2E,4E)-5-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyr-anosyloxy)penta-2,4-dienoate 16a. The residue, obtained from the reaction of the propenal $20(20.0 \mathrm{~g}, 50 \mathrm{mmol})$ and the phosphorane 19a, was shown to comprise an $80: 20$ mixture of the dienes 16a and 21a by ${ }^{1} \mathrm{H}$ NMR spectroscopy [the ratio was estimated from the integrals of the doublets at $\delta 4.87$ and 4.94 (attributed to the 1^{\prime}-H signals of 16a and 21a)]. The product was subjected to column chromatography $\left[\mathrm{Et}_{2} \mathrm{O}\right.$-hexanes ($2: 1$) as eluent] and the chromatographed material was crystallised from dichloromethane-diethyl ether-hexanes to furnish the title diene $16 \mathrm{a}(13.9 \mathrm{~g}, 61 \%)$; mp 123-125 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-24(c 0.7$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 52.3; H, 6.0. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{12}$ requires C, 52.4; $\mathrm{H}, 5.7 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 202(\varepsilon 3900)$ and 273 (29 400); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750 \mathrm{br}$ (ester $\mathrm{C}=\mathrm{O}$), 1720 (vinylogous carbonate $\mathrm{C}=\mathrm{O})$ and 1650 and $1635(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.02$, 2.04, 2.06 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.73(3 \mathrm{H}$, s, $\left.\mathrm{MeO}_{2} \mathrm{C}\right), 3.79-3.85\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.15$ and 4.27 [each 1 H , dd $\left(J 2.5\right.$ and 12.5) and dd $(J 5$ and 12.5$\left.), 6^{\prime}-\mathrm{H}_{2}\right], 4.87(1 \mathrm{H}, \mathrm{d}, J 7.5$, $\left.1^{\prime}-\mathrm{H}\right), 5.13\left(2 \mathrm{H}, \mathrm{t}, J 9,2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 5.25\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$, $5.80(1 \mathrm{H}, \mathrm{d}, J 15,2-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{t}, J 12,4-\mathrm{H}), 6.82(1 \mathrm{H}, \mathrm{d}$, $J 12,5-\mathrm{H})$ and $7.22(1 \mathrm{H}, \mathrm{dd}, J 12$ and $15,3-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 476$ $\left[\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, 100 \%\right]$ and $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 80\right)$.
tert-Butyl (2E,4E)-5-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- $\boldsymbol{\beta}$-D-glucopyr-anosyloxy)penta-2,4-dienoate 16b. (With P. D. Wyatt.) The residue, obtained from the reaction of the propenal $20(1.40 \mathrm{~g}$, 3.5 mmol) and the phosphorane $\mathbf{1 9 b}$, was crystallised from
diethyl ether-hexanes to give the title diene $\mathbf{1 6 b}(0.950 \mathrm{~g}, 54 \%)$; $\mathrm{mp} 112-113{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+19\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 55.2; $\mathrm{H}, 6.3$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{12}$ requires C, 55.2; H, 6.4\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 270(\varepsilon$ 30700); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750 \mathrm{br}$ (ester $\mathrm{C}=\mathrm{O}$), 1705 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.47$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 2.01,2.03,2.05$ and 2.09 (each 3 H , s, $\left.4 \times \mathrm{MeCO}_{2}\right), 3.80\left(1 \mathrm{H}\right.$, ddd, $J 2.5,5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.13$ and 4.27 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.85\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.08-5.15\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.23$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.71(1 \mathrm{H}, \mathrm{d}, J 15,2-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{t}, J 12$, $4-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{d}, J 12,5-\mathrm{H})$ and $7.09(1 \mathrm{H}, \mathrm{dd}, J 12$ and 15 , $3-\mathrm{H}) ; m / z(\mathrm{CI}) 518\left[\mathrm{M}_{(}\left(\mathrm{NH}_{4}\right)^{+}, 13 \%\right], 462(21)$ and 366 (100).

Benzyl (2E,4E)-5-(2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-d-glucopyr-anosyloxy)penta-2,4-dienoate 16c. The residue, obtained from the reaction of the propenal $20(20.0 \mathrm{~g}, 50 \mathrm{mmol})$ and the phosphorane 19 c , was subjected to column chromatography [hexanes $-\mathrm{Et}_{2} \mathrm{O}(1: 2)$ as eluent]. Crystallisation of the chromatographed material from dichloromethane-diethyl etherhexanes gave the title diene $\mathbf{1 6 c}(16.8 \mathrm{~g}, 62 \%)$; mp $110-111^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-18\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 58.7; H, 5.5. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{12}$ requires C, 58.4; H, 5.7\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 204$ ($\varepsilon 12800$) and 274 (31 800); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750 \mathrm{br}$ (ester $\mathrm{C}=\mathrm{O}$), 1710 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.02, 2.04, 2.05 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.81(1 \mathrm{H}$, ddd, $J 2.5,5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.14$ and 4.27 [each 1 H , dd ($J 2.5$ and 12.5$)$ and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.86\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\right.$ H), 5.09-5.16 ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$, $5.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, $5.24\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{d}, J 15,2-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{t}$, $J 12,4-\mathrm{H}), 6.82(1 \mathrm{H}, \mathrm{d}, J 12,5-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{dd}, J 12$ and 15 , $3-\mathrm{H})$ and $7.30-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{m} / \mathrm{z}$ (FAB) $535\left(\mathrm{MH}^{+}, 4 \%\right)$, $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 60\right), 169(100)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 90\right)$.

Cycloaddition reactions

Methyl (3S,6S)-1,2-bis(ethoxycarbonyl)-1,2,3,6-tetrahydro-6($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra-O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosyloxy)pyridazine-3carboxylate 17a. Method (a).-A solution of the diene 16a $(1.63 \mathrm{~g}, 3.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{1 5 a}(1.54 \mathrm{~g}, 8.9$ $\mathrm{mmol})$ in dry ethyl acetate $\left(20 \mathrm{~cm}^{3}\right)$ was heated at $c a .70^{\circ} \mathrm{C}$ for 3 days. Evaporation of the solvent and crystallisation of the residue from diethyl ether-hexanes gave the title compound $17 \mathrm{a}(1.84 \mathrm{~g}, 82 \%)$; mp $135-136^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-60\left(c 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 49.3; H, 5.7; N, 4.4. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires $\mathrm{C}, 49.4$; $\mathrm{H}, 5.7 ; \mathrm{N}, 4.4 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 203(\varepsilon 2700) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1760, 1750 and 1740 (ester $\mathrm{C}=\mathrm{O}$), 1730 and 1720 (urethane $\mathrm{C}=\mathrm{O})$ and $1660(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 55^{\circ} \mathrm{C}\right) 1.28$ and 1.34 [each $3 \mathrm{H}, \mathrm{t}(J 7)$ and brt $(J 7), 2 \times \mathrm{MeCH}_{2}$], 1.996, 2.003, 2.02 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right)$, $3.78\left(1 \mathrm{H}\right.$, ddd, $J 2.5,5$ and $\left.10,5^{\prime}-\mathrm{H}\right)$, 4.17-4.33 (6 H , $\mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Me}$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.79(1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}), 4.98(1 \mathrm{H}$, $\left.\mathrm{br} \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.06-5.14\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 5.23(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{dd}, J 2$ and $9.5,4-\mathrm{H})$ and $6.02-6.11$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.36$ and 14.43 $\left(2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 20.29,20.54$ and $20.66\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 52.79$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 57.47\left(5^{\prime}-\mathrm{CH}\right), 61.67,62.64$ and $63.35\left(2 \times \mathrm{OCH}_{2} \mathrm{Me}\right.$ and $\left.6^{\prime}-\mathrm{CH}_{2}\right), 68.36,70.13,72.20$ and $72.79\left(2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $6-\mathrm{CH}), 77.19(3-\mathrm{CH}), 95.88\left(1^{\prime}-\mathrm{CH}\right), 125.6$ and 126.1 (4- and 5-CH), $154.9(2 \times$ urethane CO) and $167.3,169.4,169.5,170.2$ and $170.7\left(5 \times\right.$ ester CO); $m / z(\mathrm{FAB}) 655\left[\mathrm{M}(\mathrm{Na})^{+}, 3 \%\right], 632$ $\left(\mathrm{M}^{+}, 1\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 17\right), 285\left[\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{10}\right)^{+}, 51\right]$ and 213 (100); $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 650\left[\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, 60 \%\right], 366$ (100) and 302 (100).

Method (b).—A solution of the diene 16a ($0.917 \mathrm{~g}, 2.0$ $\mathrm{mmol})$ and diethyl azodicarboxylate $15 \mathrm{a}(0.348 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry toluene $\left(15 \mathrm{~cm}^{3}\right)$ was heated at $c a .100^{\circ} \mathrm{C}$ for 6 h . Evaporation of the solvent and crystallisation of the residue from diethyl ether-hexanes gave the cycloadduct $\mathbf{1 7 a}(0.832 \mathrm{~g}, 66 \%)$, $\mathrm{mp} 135-136{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the sample matched that of the product obtained in method (a).

Methyl (3S,6S)-1,2-bis(2,2,2-trichloroethoxycarbonyl)-1,2, 3,6-tetrahydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyl-oxy)pyridazine-3-carboxylate 17b. A solution of the diene 16a $(0.917 \mathrm{~g}, 2.0 \mathrm{mmol})$ and bis(2,2,2-trichloroethyl) azodicarboxylate $\mathbf{1 5 b}(0.762 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated at ca. $100^{\circ} \mathrm{C}$ for 7 h . Evaporation of the solvent and crystallisation of the residue from dichloromethane-diethyl ether-hexanes gave the title compound $\mathbf{1 7 b}(1.26 \mathrm{~g}, 75 \%)$; mp $161-162^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-59\left(c 0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 37.5; H, 3.7; N, 3.2. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, 37.2; H, 3.6; N, 3.3\%); $\lambda_{\text {max }}$ (EtOH)/nm 204 (83600); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ br (ester and urethane $\mathrm{C}=\mathrm{O}$) and $1660(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right.$; $100^{\circ} \mathrm{C}$) $1.77,1.80,1.87$ and 2.04 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), 3.52 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}$), 3.79-3.83 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), 4.29 and 4.37 [each 1 H , dd ($J 3$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], 4.47, 4.75 and $4.80[1,1$ and $2 \mathrm{H}, \mathrm{d}(J 12), \mathrm{d}(J 12)$ and $\mathrm{AB} \mathrm{q}(J 12$, separation of inner lines 8.5), $2 \times \mathrm{OCH}_{2} \mathrm{CCl}_{3}$], $4.96-5.00(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 5.24-5.48\left(4 \mathrm{H}, \mathrm{m}, 1^{\prime}-, 2^{\prime}-, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 5.52(1 \mathrm{H}, \mathrm{dd}$, $J 2$ and $10,4-\mathrm{H}), 5.70(1 \mathrm{H}$, ddd, $J 2,4.5$ and $10,5-\mathrm{H})$ and 6.28 ($1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 4.5, 6-H); m / z (FAB) 865, 863, 861 and 859 [$\mathrm{M}(\mathrm{Na})^{+}, 4 \%($ for 861$\left.)\right], 783,781,779$ and $777\left[\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}\right.$, 6 (for 779)], 495, 493, 491 and $489\left[\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{10}\right)^{+}, 71\right.$ (for 491)], $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 51), 319, 317 and $315\left[\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}\right.$, 74 (for 315)], 259,257 and $255\left[\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}, 69\right.$ (for 255)] and 169 (100).

Methyl (3S,6S)-1,2-bis(benzyloxycarbonyl)-1,2,3,6-tetra-hydro-6-($\mathbf{2}^{\prime}, 3^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}$-tetra- O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosyloxy)pyr-idazine-3-carboxylate 17 c . A solution of the diene $16 \mathrm{a}(0.458 \mathrm{~g}$, $1.0 \mathrm{mmol})$ and 90% dibenzyl azodicarboxylate $\mathbf{1 5 c}(0.835 \mathrm{~g}, 2.5$ $\mathrm{mmol})$ in dry toluene $\left(10 \mathrm{~cm}^{3}\right)$ was heated at $c a .90^{\circ} \mathrm{C}$ for 18 h . Evaporation of the solvent and subjection of the residue to column chromatography gave two fractions. The first fraction [eluted with hexanes $-\mathrm{Et}_{2} \mathrm{O}(1: 1)$] was the unchanged azodicarboxylate. The second fraction (eluted with $\mathrm{Et}_{2} \mathrm{O}$) was the title compound $17 \mathrm{c}(0.658 \mathrm{~g}, 87 \%)$ as a foam. A sample, crystallised from diethyl ether-hexanes, showed $\mathrm{mp} 68-70^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-33$ (c 0.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 57.0; H, 5.4; N, 3.7. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, $57.1 ; \mathrm{H}, 5.3 ; \mathrm{N}, 3.7 \%)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 208(\varepsilon$ 18300), 247 (720), 251 (770), 257 (830), 262 (750) and 267 (600); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760 \mathrm{br}$ (ester $\mathrm{C}=\mathrm{O}$) and 1730sh (urethane $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ; 100^{\circ} \mathrm{C}\right) 1.795,1.804,1.85$ and 2.00 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.33-3.40\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.48$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 4.07$ and 4.21 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.83-4.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.91-$ $5.35\left(8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}, 1^{\prime}-, 2^{\prime}-\right.$, 3^{\prime} - and $\left.4^{\prime}-\mathrm{H}\right), 5.47(1 \mathrm{H}, \mathrm{dd}$, $J 2$ and $10,4-\mathrm{H}), 5.64(1 \mathrm{H}$, ddd, $J 2,4.5$ and $10,5-\mathrm{H})$ and $6.16-$ $6.19(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ (the $\mathrm{C}_{6} \mathrm{H}_{5}$ signals were partly obscured by the solvent signals); m / z (FAB) $779\left[\mathrm{M}(\mathrm{Na})^{+}, 5 \%\right], 365$ (56), 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 28\right)$ and 169 (100).

Methyl (3S,6S)-1,2-bis(isopropoxycarbonyl)-1,2,3,6-tetra-hydro-6-($\mathbf{2}^{\prime}, 3^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)pyr-idazine-3-carboxylate 17 d . A solution of the diene $16 \mathrm{a}(0.917 \mathrm{~g}$, $2.0 \mathrm{mmol})$ and diisopropyl azodicarboxylate $15 \mathrm{~d}(0.404 \mathrm{~g}, 2.0$ mmol) in dry toluene ($15 \mathrm{~cm}^{3}$) was heated at $c a .100^{\circ} \mathrm{C}$ for 7 h . Evaporation of the solvent and crystallisation of the residue from diethyl ether gave the title cycloadduct 17d ($0.748 \mathrm{~g}, 57 \%$); $\mathrm{mp} 135-136^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-72\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 50.9 ; H , 6.1; $\mathrm{N}, 4.1 . \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, $50.9 ; \mathrm{H}, 6.1 ; \mathrm{N}, 4.2 \%$); $\lambda_{\text {max }}$ $(\mathrm{EtOH}) / \mathrm{nm} 206(\varepsilon 2400)$ and $273(330) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1755 \mathrm{br}$ and 1740 (ester $\mathrm{C}=\mathrm{O}$), 1720 (urethane $\mathrm{C}=\mathrm{O}$) and $1660(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ; 100^{\circ} \mathrm{C}\right.$) 1.13, 1.15, 1.24 and 1.37 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,2 \times \mathrm{Me}_{2} \mathrm{CH}$), 1.78, 1.81, 1.90 and 2.08 (each 3 H , $\mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.69-3.75\left(1 \mathrm{H}, \mathrm{m} 5^{\prime}-\right.$ H), 4.26 and 4.34 (each 1 H , dd ($J 2.5$ and 12) and dd ($J 5$ and 12), $6^{\prime}-\mathrm{H}_{2}$], 4.81-4.83 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 4.91 and 5.00 (each 1 H , septet, $\left.J 6,2 \times \mathrm{OC} H \mathrm{Me}_{2}\right), 5.23\left(1 \mathrm{H}, \mathrm{t}, J 9,4^{\prime}-\mathrm{H}\right), 5.26$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.37\left(1 \mathrm{H}, \mathrm{t}, J 8.5,2^{\prime}-\mathrm{H}\right), 5.44(1 \mathrm{H}, \mathrm{t}$, $\left.J 9,3^{\prime}-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $9.5,4-\mathrm{H}), 5.70(1 \mathrm{H}$, ddd,
$J ~ 2, ~ 4.5$ and $9.5,5-\mathrm{H})$ and $6.16-6.20(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) $683\left[\mathrm{M}(\mathrm{Na})^{+}, 8 \%\right], 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 14\right), 227$ (100) and 185 (86).

Methyl (3S,6S)-1,2-bis(tert-butoxycarbonyl)-1,2,3,6-tetra-hydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)pyr-idazine-3-carboxylate 17e. A solution of the diene 16a (3.40 g, 7.4 mmol) and di-tert-butyl azodicarboxylate 15 e ($5.10 \mathrm{~g}, 22.1$ $\mathrm{mmol})$ in dry dichloromethane ($80 \mathrm{~cm}^{3}$) was heated under reflux for 5 days. Evaporation of the solvent and subjection of the residue to column chromatography gave two fractions. The first fraction [eluted with hexanes- $\mathrm{Et}_{2} \mathrm{O}(1: 1)$] was the unchanged azodicarboxylate. The second fraction (eluted with $\mathrm{Et}_{2} \mathrm{O}$) was the title compound $17 \mathrm{e}(3.94 \mathrm{~g}, 77 \%)$ as a foam. A sample, crystallised from diethyl ether-hexanes, showed $\mathrm{mp} 88-90^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-62\left(c \quad 0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, $52.6 ; \mathrm{H}, 6.4 ; \mathrm{N}, 4.1$ $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, $\left.52.3 ; \mathrm{H}, 6.4 ; \mathrm{N}, 4.1 \%\right) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 208 ($\varepsilon 2200$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and 1740 (ester $\mathrm{C}=\mathrm{O}$) and 1710 (urethane $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 100^{\circ} \mathrm{C}\right) 1.56$ $\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}_{3} \mathrm{C}\right), 2.06,2.08,2.10$ and 2.13 (each 3 H , s, $4 \times \mathrm{MeCO}_{2}$), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.95-4.00\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, 4.20 and 4.36 [each 1 H , dd $(J 2.5$ and 12.5) and dd $(J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.73(1 \mathrm{H}$, br d, separation 2, 3-H), $4.97-5.12(3 \mathrm{H}$, $\mathrm{m}, 1^{\prime}-, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 5.29\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.97(1 \mathrm{H}, \mathrm{dd}, J 2$ and $4.5,6-\mathrm{H}), 6.00(1 \mathrm{H}, \mathrm{dd}, J 2$ and $10,4-\mathrm{H})$ and $6.20(1 \mathrm{H}$, ddd, $J 2,4.5$ and $10,5-\mathrm{H}) ; m / z(\mathrm{FAB}) 711\left[\mathrm{M}(\mathrm{Na})^{+}, 1 \%\right], 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 29\right), 185(100)$ and 169 (71).
tert-Butyl (3S,6S)-1,2-bis(tert-butoxycarbonyl)-1,2,3,6-tetra-hydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-glucopyranosyloxy)pyr-idazine-3-carboxylate $\mathbf{1 7 f}$. A solution of the diene $\mathbf{1 6 b}(0.546 \mathrm{~g}$, $1.1 \mathrm{mmol})$ and di-tert-butyl azodicarboxylate $15 \mathrm{e}(0.800 \mathrm{~g}, 3.5$ $\mathrm{mmol})$ in dry toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated under reflux for 3 days. Evaporation of the solvent and subjection of the residue to column chromatography [light petroleum $-\mathrm{Et}_{2} \mathrm{O}$ (1:1) as eluent] gave two fractions. The first fraction was the unchanged azodicarboxylate. The second fraction was the title compound $\mathbf{1 7 f}(0.381 \mathrm{~g}, 48 \%)$ as an amorphous solid. A sample, crystallised from diethyl ether-light petroleum, showed $\mathrm{mp} 79-81^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-72\left(c \quad 0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, $54.5 ; \mathrm{H}, 6.9 ; \mathrm{N}, 4.1$. $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, $\left.54.2 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.8 \%\right) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 206 ($\varepsilon 4400$) and 307 (540); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ (ester $\mathrm{C}=\mathrm{O}$) and 1720 (urethane $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 100^{\circ} \mathrm{C}\right)$ 1.53, 1.56 and 1.58 (each $9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{Me}_{3} \mathrm{C}$), 2.05, 2.09, 2.10 and 2.14 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), 3.93-3.99 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), 4.22 and 4.36 [each 1 H , dd ($J 3$ and 12.5) and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.57(1 \mathrm{H}$, br d, separation 2, 3-H), 4.98-5.14 (3 H, m, $1^{\prime}-, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 5.28\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.97-6.06(2 \mathrm{H}, \mathrm{m}$, $4-$ and $6-\mathrm{H})$ and $6.18(1 \mathrm{H}$, ddd, $J 2,5$ and $9.5,5-\mathrm{H}) ; m / z(\mathrm{FAB})$ $731\left(\mathrm{MH}^{+}, 0.2 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 30\right)$ and $171(100)$.

Benzyl (3S,6S)-1,2-bis(tert-butoxycarbonyl)-1,2,3,6-tetra-hydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)pyr-idazine-3-carboxylate $\mathbf{1 7 g}$. A solution of the diene $\mathbf{1 6 c}(1.00 \mathrm{~g}$, $1.9 \mathrm{mmol})$ and di-tert-butyl azodicarboxylate $\mathbf{1 5 e}(1.50 \mathrm{~g}, 6.5$ $\mathrm{mmol})$ in dry toluene $\left(30 \mathrm{~cm}^{3}\right)$ was heated at $c a .85^{\circ} \mathrm{C}$ for 5 days. Evaporation of the solvent and subjection of the residue to column chromatography [light petroleum- $\mathrm{Et}_{2} \mathrm{O}(1: 1 \rightarrow 1: 2)$ as eluent] gave two fractions. The first fraction was the unchanged azodicarboxylate. The second fraction $(1.08 \mathrm{~g}$, 76%), obtained as a foam, was the title compound $\mathbf{1 7 g}$. A sample, crystallised from diethyl ether-light petroleum, showed mp $131-133{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-18\left(c 0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 56.5; H, 6.1; $\mathrm{N}, 3.4 . \mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C , $56.5 ; \mathrm{H}, 6.3 ; \mathrm{N}, 3.7 \%$); $\lambda_{\text {max }}$ (EtOH)/nm 205 ($\varepsilon 12$ 300), 250 (900), 256 (800), 261 (700), 267 (550) and $290(400)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750$ br (ester $\left.\mathrm{C}=\mathrm{O}\right)$ and 1720sh (urethane $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ; 80^{\circ} \mathrm{C}\right) 1.39$ and 1.56 (each 9 H , s and br s, $2 \times \mathrm{Me}_{3} \mathrm{C}$), 1.74, 1.77, 1.86 and 2.07 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.70-3.80\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.25$ and 4.34 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 5$ and 12.5),
$\left.6^{\prime}-\mathrm{H}_{2}\right], 4.82-4.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right), 5.20-$ $5.50\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime}-, 2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.4-\mathrm{H}\right), 5.62(1 \mathrm{H}, \mathrm{ddd}, J 2,4$ and $10,5-\mathrm{H})$ and $6.13-6.18(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})\left(\right.$ the $\mathrm{C}_{6} \mathrm{H}_{5}$ signals were partly obscured by the solvent signals); $m / z(\mathrm{FAB}) 765\left(\mathrm{MH}^{+}\right.$, $0.2 \%), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 20\right), 261(95)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 100\right)$.

Hydrogenation reactions

General procedure. A mixture of the tetrahydropyridazine $(0.6 \mathrm{mmol})$ and 10% palladium-carbon $(0.100 \mathrm{~g})$ in ethyl acetate $\left(20 \mathrm{~cm}^{3}\right)$ was stirred under an atmosphere of hydrogen (contained in a balloon) for 18 h . The mixture was then filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated. The residue was processed in the manner described.

Methyl (3S,6S)-1,2-bis(ethoxycarbonyl)-1,2,3,4,5,6-hexa-hydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)pyr-idazine-3-carboxylate 18a. The residue obtained from the reaction of the tetrahydropyridazine $\mathbf{1 7 a}(0.442 \mathrm{~g}, 0.70 \mathrm{mmol})$ was crystallised from diethyl ether-hexanes to give the title compound 18a ($0.412 \mathrm{~g}, 93 \%$); mp $127-128^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-20(c 0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 49.3; H, 6.1; N, 4.4. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, 49.2; H, 6.0; N, 4.4\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 202$ ($\varepsilon 1850$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and 1745 (ester $\mathrm{C}=\mathrm{O}$) and 1730 and 1715 (urethane $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 55^{\circ} \mathrm{C}\right) 1.29$ and 1.35 [each $3 \mathrm{H}, \mathrm{t}(J 7)$ and br t $(J 6.5), 2 \times M e \mathrm{CH}_{2}$], 1.51-1.65 (2 H , $\left.\mathrm{m}, 4-\mathrm{H}_{2}\right), 1.87-2.09\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 2.00,2.016,2.019$ and 2.10 (each $\left.3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}\right), 3.69-3.75\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{MeO}_{2} \mathrm{C}\right), 4.12-4.32\left(7 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Me}, 3-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right)$, $4.86\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.04-5.32\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $5.85(1 \mathrm{H}$, br t, $J 6.5,6-\mathrm{H}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ; 100^{\circ} \mathrm{C}\right)$ $1.11(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 1.19-1.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{C}_{2}\right.$ and $4-\mathrm{H}_{2}$), 1.56-1.72 and 1.78-1.90 (each $1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 1.78, 1.80, 1.90 and 2.03 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.53(3 \mathrm{H}$, s MeO 2 C$)$, 3.68-3.74 (1 H, m, 5'-H), 4.04-4.32 (7 H, m, $2 \times \mathrm{OCH}_{2} \mathrm{Me}, 3-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 5.13\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.22\left(1 \mathrm{H}, \mathrm{t}, J 9,4^{\prime}-\mathrm{H}\right)$, $5.34\left(1 \mathrm{H}, \mathrm{t}, J 9,2^{\prime}-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$ and $5.96(1 \mathrm{H}$, br t, $J 6.5,6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.32$ and 14.38 $\left(2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 20.29,20.46,20.50$ and $20.62\left(4 \times \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$, 21.86 and $23.68\left(4-\right.$ and $\left.5-\mathrm{CH}_{2}\right), 52.18\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.56\left(5^{\prime}-\mathrm{CH}\right)$, 61.61, 62.47 and $63.07\left(2 \times \mathrm{OCH}_{2} \mathrm{Me}\right.$ and $\left.6^{\prime}-\mathrm{CH}_{2}\right), 68.43$, $70.13,72.15$ and $72.56\left(2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.6-\mathrm{CH}\right), 81.03(3-\mathrm{CH})$, $95.18\left(1^{\prime}-\mathrm{CH}\right), 155.1(2 \times$ urethane CO$)$ and 169.3, 169.48, 169.53, 170.2 and $170.7(5 \times$ ester CO$) ; m / z(\mathrm{FAB}) 673\left[\mathrm{M}(\mathrm{K})^{+}\right.$, $2 \%], 657\left[\mathrm{M}(\mathrm{Na})^{+}, 5\right], 634\left(\mathrm{M}^{+}, 2\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 34\right), 287$ $\left[\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{10}\right)^{+}, 66\right]$ and 215 (100).

Methyl (3S,6S)-1,2-bis(2,2,2-trichloroethoxycarbonyl)-1,2,3, 4,5,6-hexahydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-glucopyrano-syloxy)pyridazine-3-carboxylate $\mathbf{1 8 b}$. The residue obtained from the reaction of the tetrahydropyridazine $\mathbf{1 7 b}(0.504 \mathrm{~g}, 0.60$ mmol) was crystallised from diethyl ether-hexanes to give the title compound $\mathbf{1 8 b}$ as a hemi-diethyl ether addition compound $(0.446 \mathrm{~g}, 84 \%) ; \mathrm{mp} 123-124{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-20\left(c \quad 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 38.0; H, 4.4; $\mathrm{Cl}, 24.2 ; \mathrm{N}, 3.3 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{16}{ }^{\circ}$ $0.5 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ requires $\mathrm{C}, 38.3 ; \mathrm{H}, 4.3 ; \mathrm{Cl}, 24.2 ; \mathrm{N}, 3.2 \%$); $\lambda_{\text {max }}$ $(\mathrm{EtOH}) / \mathrm{nm} 202(\varepsilon 2200) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760 \mathrm{br}$ (ester and urethane $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ; 100^{\circ} \mathrm{C}\right) 1.29-1.49$ and 1.59-1.89 (each $2 \mathrm{H}, \mathrm{m}, 4$ - and $5-\mathrm{H}_{2}$), 1.76, $1.79,1.88$ and 2.02 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.76-3.84(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.29$ and 4.36 [each 1 H , dd $(J 2.5$ and 12$)$ and dd ($J 4.5$ and 12), $6^{\prime}-\mathrm{H}_{2}$], 4.37-4.45 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 4.49, 4.73 and $4.84-5.00$ [1, 1 and 2 H , br d $(J 12.5)$, $\mathrm{d}(J 11.5)$ and br m , $\left.2 \times \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right], 5.24\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.26\left(1 \mathrm{H}, \mathrm{t}, J 9,4^{\prime}-\mathrm{H}\right)$, $5.36\left(1 \mathrm{H}, \mathrm{t}, J 8.5,2^{\prime}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$ and $6.06(1 \mathrm{H}, \mathrm{t}$, $J 6.5,6-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 867,865,863$ and $861\left[\mathrm{M}(\mathrm{Na})^{+}, 1 \%\right.$ (for 863)], 497, 495, 493 and 491 [($\left.\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{10}\right)^{+}, 40$ (for 493)], $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 36\right), 321,319$ and $317\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}\right.$, 55 (for 317)], 261, 259 and 257 [$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$, 25 (for 257)], 169 (96) and 141 (100).

Reaction involving the tetrahydropyridazine 17 c . The residue $(0.348 \mathrm{~g})$ obtained from the hydrogenation of the tetrahydropyridazine $17 \mathrm{c}(0.490 \mathrm{~g}, 0.65 \mathrm{mmol})$ [using $5 \% \mathrm{Pd}-\mathrm{C}(0.200 \mathrm{~g})$ for 1.5 h] comprised of mainly a $5: 3: 1$ mixture of $2,3,4,6$-tetra-O-acetyl-D-glucopyranose 22 (as a $1: 1$ mixture of α - and β-anomers), methyl (3S)-2,3,4,5-tetrahydropyridazine-3-carboxylate $\mathbf{1 b}$ and methyl pyridazine-3-carboxylate 24 by ${ }^{1} \mathrm{H}$ NMR spectroscopy [the proportions were estimated from the integrals of the triplet at $\delta 5.23$ (attributed to the $3-\mathrm{H}$ signal of the β-anomer of 22), the triplet at $\delta 5.53$ (ascribed to the $3-\mathrm{H}$ signal of the α-anomer of 22), the broad singlet at $\delta 6.73$ (attributed to the 6-H signal of 1b) and the double doublet at $\delta 7.67$ (assigned to the $5-\mathrm{H}$ signal of 24)]. Subjection of the product to column chromatography gave three fractions.

The first fraction ($0.232 \mathrm{~g}, c a .100 \%$) (eluted with $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, isolated as a colourless foam, was mainly compound 22 (as a $2: 1$ mixture of α - and β-anomers) by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The second fraction ($0.034 \mathrm{~g}, 37 \%$) (eluted with $\mathrm{Et}_{2} \mathrm{O}$), isolated as a colourless syrup, was methyl ($3 S$)-2,3,4,5-tetrahydro-pyridazine-3-carboxylate $\mathbf{1 b}$ on the basis of its specific rotation $\left\{[a]_{\mathrm{D}}+100(c 0.25, \mathrm{MeOH})\left[\right.\right.$ lit. $\left.\left.{ }^{11}+139(c 0.83, \mathrm{MeOH})\right]\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectrum (which matched that of the sample obtained from the reaction of 18 e with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$).

The third fraction ($0.012 \mathrm{~g}, c a .13 \%$) (eluted with EtOAc), isolated as a pale yellow solid, was mainly methyl pyridazine-3carboxylate 24; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ inter alia $4.09(3 \mathrm{H}$, s, $\left.\mathrm{MeO}_{2} \mathrm{C}\right), 7.67(1 \mathrm{H}$, dd, $J 5$ and $8.5,5-\mathrm{H}), 8.23(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $8.5,4-\mathrm{H})$ and $9.37(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $5,6-\mathrm{H}) ; \| m / z(\mathrm{CI}) 156$ $\left[\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, 7 \%\right], 140\left(\mathrm{MH}_{2}^{+}, 39\right)$ and $139\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{m} / \mathrm{z}$ (FAB) $139\left(\mathrm{MH}^{+}, 100 \%\right)$.

Methyl (3S,6S)-1,2-bis(isopropoxycarbonyl)-1,2,3,4,5,6-hexa-hydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-glucopyranosyloxy)pyr-
idazine-3-carboxylate 18d. The residue obtained from the reaction of the tetrahydropyridazine $\mathbf{1 7 d}(0.462 \mathrm{~g}, 0.70 \mathrm{mmol})$ was crystallised from diethyl ether-hexanes to give the title compound $18 \mathbf{d}(0.380 \mathrm{~g}, 82 \%)$; mp $109-110^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-14(c 0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, $50.8 ; \mathrm{H}, 6.5 ; \mathrm{N}, 4.2 . \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires $\mathrm{C}, 50.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 4.2 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 202$ ($\varepsilon 1750$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765,1755$ and 1740 (ester $\mathrm{C}=\mathrm{O}$) and 1705 (urethane $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ; 90^{\circ} \mathrm{C}\right) 1.15$ and 1.18 (each $\left.3 \mathrm{H}, \mathrm{d}, J 6.5, M e_{2} \mathrm{CH}\right), 1.16-1.44\left(8 \mathrm{H}, \mathrm{m}, M e_{2} \mathrm{CH}\right.$ and $4-\mathrm{H}_{2}$), 1.59-1.69 and 1.81-1.91 (each $1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 1.78, 1.80, 1.91 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right)$, $3.72-3.80\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.27-4.39\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right)$, 4.90-5.00 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH} \mathrm{Me}_{2}$), 5.15-5.27 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{and}$ $\left.4^{\prime}-\mathrm{H}\right), 5.37\left(1 \mathrm{H}, \mathrm{t}, J 8.5,2^{\prime}-\mathrm{H}\right), 5.45\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$ and 5.97 $(1 \mathrm{H}, \mathrm{t}, J 6.5,6-\mathrm{H}) ; m / z(\mathrm{FAB}) 685\left[\mathrm{M}(\mathrm{Na})^{+}, 13 \%\right], 662\left(\mathrm{M}^{+}, 3\right)$, $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 26\right)$ and 229 (100).

Methyl (3S,6S)-1,2-bis(tert-butoxycarbonyl)-1,2,3,4,5,6-hexahydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-glucopyranosyloxy)-pyridazine-3-carboxylate 18e. The residue obtained from the hydrogenation of the tetrahydropyridazine $17 \mathrm{e}(4.00 \mathrm{~g}, 5.8$ $\mathrm{mmol})$ was the title compound $\mathbf{1 8 e}(3.38 \mathrm{~g}, 84 \%)$ as a foam. A sample, crystallised from diethyl ether-hexanes, showed mp $96-9{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-5\left(c 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, $52.2 ; \mathrm{H}, 7.0 ; \mathrm{N}$, 4.3. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires $\mathrm{C}, 52.2 ; \mathrm{H}, 6.7 ; \mathrm{N}, 4.1 \%$); $\lambda_{\text {max }}$ $(\mathrm{EtOH}) / \mathrm{nm} 203(\varepsilon 1800) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and 1740 (ester $\mathrm{C}=\mathrm{O}$) and 1710 (urethane $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right.$; $\left.100{ }^{\circ} \mathrm{C}\right) 1.18-1.30\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.44\left(18 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{Me}_{3} \mathrm{C}\right)$, $1.52-1.62$ and $1.74-1.86$ (each $1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 1.75, 1.77, 1.80 and 1.91 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.49\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{MeO}_{2} \mathrm{C}\right)$, $3.80-3.86\left(1 \mathrm{H}\right.$, br m, $\left.5^{\prime}-\mathrm{H}\right), 4.28-4.34\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right)$, $5.16-5.24\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime}-\mathrm{H}\right), 5.27\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.30-5.58$
|| The NMR spectrum matched that of an authentic sample of compound $\mathbf{2 4}$ [obtained by the action of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ on pyridazine-3-carboxylic acid (prepared from pyridazine by the method of Letsinger and Lasco; see ref. 27)].
($2 \mathrm{H}, \mathrm{br} \mathrm{m}, 2^{\prime}-\mathrm{and} 3^{\prime}-\mathrm{H}$) and $5.93(1 \mathrm{H}, \mathrm{brt}, J 6.5,6-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) $713\left[\mathrm{M}(\mathrm{Na})^{+}, 5 \%\right], 490(39), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 36\right)$ and 187 (100).
tert-Butyl (3S,6S)-1,2-bis(tert-butoxycarbonyl)-1,2,3,4,5,6-hexahydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-pyridazine-3-carboxylate 18f. The residue obtained from the hydrogenation of the tetrahydropyridazine $\mathbf{1 7 f}(0.300 \mathrm{~g}$, $0.41 \mathrm{mmol})$ was the title compound $\mathbf{1 8 f}(0.259 \mathrm{~g}, 86 \%)$ as an amorphous solid. A sample, crystallised from diethyl ether-light petroleum, showed mp $184-186^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-13\left(c 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 54.4; H, 7.4; N, 3.9. $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, 54.1; H, $7.2 ; \mathrm{N}, 3.8 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 204(\varepsilon 2000) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1760, 1750 and 1730 (ester $\mathrm{C}=\mathrm{O}$) and 1705 (urethane $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 100^{\circ} \mathrm{C}\right) 1.53$ and $1.57(9$ and 18 H , each s, $\left.3 \times \mathrm{Me}_{3} \mathrm{C}\right), 1.61-1.87\left(4 \mathrm{H}, \mathrm{m}, 4-\right.$ and $\left.5-\mathrm{H}_{2}\right), 2.05,2.10$ and $2.13\left(3,6\right.$ and 3 H , each s, $\left.4 \times \mathrm{MeCO}_{2}\right), 3.85-3.90(1 \mathrm{H}$, br $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.07-4.17(1 \mathrm{H}$, br m, 3-H), 4.20 and 4.32 [each 1 H , dd ($J 3$ and 12.5) and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.95-5.10(3 \mathrm{H}$, br m, $1^{\prime}-$, $2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 5.25-5.30\left(1 \mathrm{H}\right.$, br m, $\left.3^{\prime}-\mathrm{H}\right)$ and 5.77 $(1 \mathrm{H}, \mathrm{t}, J 7.5,6-\mathrm{H}) ; m / z(\mathrm{FAB}) 733\left(\mathrm{MH}^{+}, 1\right), 532(9)$ and 173 (100).
(3S,6S)-1,2-Bis(tert-butoxycarbonyl)-1,2,3,4,5,6-hexahydro-6-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)pyridazine-3-carboxylic acid 18h. The residue obtained from the hydrogenation of the tetrahydropyridazine $\mathbf{1 7 g}(6.69 \mathrm{~g}, 8.7 \mathrm{mmol})$ was crystallised from diethyl ether-hexanes to give the title compound $18 \mathrm{~h}(4.09 \mathrm{~g}, 69 \%)$; mp $100-101^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-5$ (c 0.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, $51.8 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.1 . \mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{16}$ requires C, 51.5; H, 6.6; N, 4.1\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 203$ (ε 1900); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and $1745($ ester $\mathrm{C}=\mathrm{O}), 1730($ acid $\mathrm{C}=\mathrm{O})$ and 1710 (urethane $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 100^{\circ} \mathrm{C}\right) 1.56$ and 1.58 (each 9 H , br s and s, $2 \times \mathrm{Me}_{3} \mathrm{C}$), $1.65-1.90(4 \mathrm{H}$, m, $4-$ and $5-\mathrm{H}_{2}$) $2.05,2.08,2.10$ and 2.13 (each 3 H , s, $\left.4 \times \mathrm{MeCO}_{2}\right), 3.85-3.90(1 \mathrm{H}$, br m, 5' -H$), 4.17-4.23(2 \mathrm{H}, \mathrm{m}$, $3-$ and $\left.6^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $\left.12.5,6^{\prime}-\mathrm{H}\right), 4.93-5.09(3 \mathrm{H}$, $\mathrm{m}, 1^{\prime}-, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 5.28\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$ and $5.76(1 \mathrm{H}, \mathrm{t}$, $J 7.5,6-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 699\left[\mathrm{M}(\mathrm{Na})^{+}, 0.2 \%\right], 677\left(\mathrm{MH}^{+}, 0.3\right)$, 476 (95), $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 27) and 173 (100).

Trifluoroacetolysis studies

Reactions involving the tetrahydropyridazinecarboxylate 18e. $\operatorname{Method}(a)$.-A solution of compound $\mathbf{1 8 e}(2.73 \mathrm{~g}, 4.0 \mathrm{mmol})$ in TFA $\left(5 \mathrm{~cm}^{3}\right)$ was left for 10 min . Evaporation of the TFA and subjection of the residue to column chromatography [light petroleum $-\mathrm{Et}_{2} \mathrm{O}(1: 2)$ as eluent] gave two fractions.

The first fraction, isolated as a syrup, was identified as 2,3,4,6-tetra- O-acetyl-D-glucopyranose 22 (as a $3: 1$ mixture of α - and β-anomers) by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The second fraction $(0.319 \mathrm{~g}, 57 \%)$, obtained as a colourless oil, was methyl ($3 S$)-2,3,4,5-tetrahydropyridazine-3-carboxylate $\mathbf{1 b} ;[a]_{\mathrm{D}}+124(c 1.6, \mathrm{MeOH})\left[\right.$ lit., $\left.{ }^{11}+139(c 0.83, \mathrm{MeOH})\right] ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3370(\mathrm{~N}-\mathrm{H})$ and 1740 (ester $\left.\mathrm{C}=\mathrm{O}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.00-2.26\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}_{2}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right)$, 3.76-3.80 (1 H, m, 3-H), $6.0(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $6-\mathrm{H})$ (addition of $\mathrm{D}_{2} \mathrm{O}$ caused the signal at $\delta 6.0$ to disappear and that at $\delta 3.76-3.80$ to sharpen); $m / z(\mathrm{CI}) 143\left(\mathrm{MH}^{+}, 51 \%\right)$, 83 (23) and 32 (100); m / z (EI) 142 ($\left.\mathrm{M}^{+}, 19 \%\right)$ and 83 (100) (Found: M, 142.0742. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires m / z 142.0742); m / z (FAB) $143\left(\mathrm{MH}^{+}, 100 \%\right)$.

Method (b).—A solution of compound 18e ($0.830 \mathrm{~g}, 1.2$ $\mathrm{mmol})$ in TFA $\left(2.4 \mathrm{~cm}^{3}\right)$ was left for 15 min . Evaporation of the TFA and subjection of the residue to column chromatography ($\mathrm{Et}_{2} \mathrm{O}$ as eluent) gave three fractions.

The first fraction $(0.238 \mathrm{~g}, 57 \%)$, isolated as a syrup, was 2,3,4,6-tetra- O-acetyl-D-glucopyranose 22 (as a $3: 1$ mixture of α - and β-anomers) by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The second fraction $(0.174 \mathrm{~g}, 31 \%)$, isolated as a crystalline
solid, was methyl (3S)-2,3,4,5-tetrahydro-2-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyl) pyridazine-3-carboxylate 25; mp $129-130{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-26\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, $50.9 ; \mathrm{H}, 6.3$; $\mathrm{N}, 5.9 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{11}$ requires C, $50.8 ; \mathrm{H}, 6.0 ; \mathrm{N}, 5.9 \%$); $\lambda_{\text {max }}$ $(\mathrm{EtOH}) / \mathrm{nm} 222$ (86900$) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1740br (ester C=O) and $1615(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85-2.20(4 \mathrm{H}, \mathrm{m}$, $4-$ and $5-\mathrm{H}_{2}$), 2.012, 2.015, 2.019 and 2.07 (each $3 \mathrm{H}, \mathrm{s}$, $\left.4 \times \mathrm{MeCO}_{2}\right), 3.66-3.72\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right)$, 4.07 and 4.24 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and $\left.12.5), 6^{\prime}-\mathrm{H}_{2}\right], 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4,3-\mathrm{H}), 4.69\left(1 \mathrm{H}, \mathrm{d}, J 9,1^{\prime}-\mathrm{H}\right)$, $5.06\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.28\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.40(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,2^{\prime}-\mathrm{H}\right)$ and $6.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}) ; m / z(\mathrm{FAB}) 495\left[\mathrm{M}(\mathrm{Na})^{+}\right.$, $11 \%], 473\left(\mathrm{MH}^{+}, 80\right), 413(42), 353(53), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}^{+}{ }^{+}, 43\right)$ and 169 (100).

The third fraction $(0.082 \mathrm{~g}, 48 \%)$, isolated as a colourless oil, was methyl ($3 S$)-2,3,4,5-tetrahydropyridazine-3-carboxylate 1b [the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum matched that of the sample prepared by method (a)]; [a] $]_{\mathrm{D}}+108(c 0.25, \mathrm{MeOH})\left[\right.$ lit., ${ }^{11}+139$ (c $0.83, \mathrm{MeOH})$]; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 21.06 (4- and $5-\mathrm{CH}_{2}$), $52.18\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.27(3-\mathrm{CH}), 140.0(6-\mathrm{CH})$ and 171.7 (ester CO).

Reaction involving the tetrahydropyridazinecarboxylic acid $\mathbf{1 8 h}$. A solution of the acid $\mathbf{1 8 h}(1.13 \mathrm{~g}, 1.7 \mathrm{mmol})$ in TFA $\left(8 \mathrm{~cm}^{3}\right)$ was left for 20 min . Evaporation of the TFA left a residue, which was partitioned between dichloromethane and water. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase left 2,3,4,6-tetra- O-acetyl-d-glucopyranose $22(0.534 \mathrm{~g}, 92 \%$) (as a $3: 1$ mixture of α - and β-anomers) by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

After having been washed twice with dichloromethane, the aqueous phase was concentrated and dried (in vacuo; $\mathrm{P}_{2} \mathrm{O}_{5}$) to give (3S)-2,3,4,5-tetrahydropyridazine-3-carboxylic acid trifluoroacetic acid salt $27(0.395 \mathrm{~g}, 98 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}$ $+62(c 0.3, \mathrm{MeOH}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 203$ ($\left.\varepsilon 3900\right), 227$ (4100) and 280 (1900); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3300-2500 \mathrm{br}(\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H})$, 1730br (acid C=O) and 1670br (trifluoroacetate $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) 2.03-2.29 and 2.42-2.65 (each $2 \mathrm{H}, \mathrm{m}, 4$ - and $\left.5-\mathrm{H}_{2}\right), 4.01(1 \mathrm{H}, \mathrm{dd}, J 4$ and $8,3-\mathrm{H}), 4.8(\mathrm{HOD})$ and $7.56(1 \mathrm{H}$, $\mathrm{t}, J 3,6-\mathrm{H}) ; \delta_{\mathrm{F}}\left(188 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.12\left(\mathrm{~s}, \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right) ; m / z(\mathrm{CI}) 146$ [$\mathrm{M}\left(\mathrm{NH}_{4}\right)^{+}, 23 \%$] and $129\left(\mathrm{MH}^{+}, 100\right)$ (Found: MH, 129.0666. $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires m / z 129.0664); $m / z(\mathrm{EI}) 128\left(\mathrm{M}^{+}, 4 \%\right)$ and 31 (100).

Chromatography-free preparation of methyl (3S)-2,3,4,5-tetra-hydropyridazine-3-carboxylate 1b

A solution of the diene $\mathbf{1 6 a}(0.917 \mathrm{~g}, 2.0 \mathrm{mmol})$ and the azodicarboxylate $\mathbf{1 5 e}(1.38 \mathrm{~g}, 6.0 \mathrm{mmol})$ in dry dichloromethane (25 cm^{3}) was heated under reflux for 5 days. Evaporation of the solvent left a yellow foam, which was dissolved in ethyl acetate $\left(40 \mathrm{~cm}^{3}\right)$ and stirred with 10% palladium-carbon (0.200 g) under a hydrogen atmosphere for 18 h . The mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated. The resultant foam was dissolved in TFA $\left(4 \mathrm{~cm}^{3}\right)$ and, after 15 min , the solution was diluted with dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ and washed sequentially with water $\left(10 \mathrm{~cm}^{3}\right)$, saturated aq. sodium hydrogen carbonate $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase left an orange syrup, which was treated with methanol $\left(10 \mathrm{~cm}^{3}\right)$ containing toluene- p sulfonic acid $(0.570 \mathrm{~g}, 3.0 \mathrm{mmol})$ for 18 h . The mixture was then diluted with water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aq. sodium hydrogen carbonate ($2 \times 50 \mathrm{~cm}^{3}$) and water $\left(25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to leave mainly the title compound $\mathbf{1 b}\left(0.058 \mathrm{~g}, c a .20 \%\right.$ based on 16a), $[a]_{\mathrm{D}}+86$ (c $0.25, \mathrm{MeOH}$), as a yellow syrup (identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy).

Sodium (3S)-2,3,4,5-tetrahydropyridazine-3-carboxylate 1c

Sodium hydroxide ($2 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.70 \mathrm{~cm}^{3}, 1.4 \mathrm{mmol}$) was added
to a stirred solution of the ester $\mathbf{1 b}(0.144 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$. After 5 h , the mixture was concentrated to leave an oil $(0.150 \mathrm{~g}, c a .100 \%)$ that was largely the title salt $\mathbf{1 c} ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) 1.87-2.00 and 2.06-2.17 (each $1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), 2.18$2.34\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.55(1 \mathrm{H}, \mathrm{dd}, J 4$ and $8,3-\mathrm{H}), 4.8$ (HOD) and $6.90(1 \mathrm{H}$, br t, $J 2.5,6-\mathrm{H})$.

Methyl (3S)-1-(2,4-dinitrophenyl)-1,2,3,4,5,6-hexahydro-pyridazine-3-carboxylate 26a

Method (a).-Sodium cyanoborohydride ($0.030 \mathrm{~g}, 0.48 \mathrm{mmol}$) was added to a stirred solution of the tetrahydropyridazine $\mathbf{1 b}$ $(0.056 \mathrm{~g}, 0.4 \mathrm{mmol})\left\{\left[\alpha_{\mathrm{D}}+124(c 1.6, \mathrm{MeOH})\right\}\right.$ in methanol $(12$ $\left.\mathrm{cm}^{3}\right)$. Removal of the solvent after 18 h left a residue, which was dissolved in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ and treated with 2,4-dinitrofluorobenzene ($0.2 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$) for 5 h . Concentration, subjection of the residue to column chromatography [hexanes$\mathrm{Et}_{2} \mathrm{O}(1: 1)$ as eluent] and crystallisation of the chromatographed material from ethyl acetate-hexanes gave the title compound $26 \mathrm{a}\left(0.032 \mathrm{~g}, 26 \%\right.$) as a yellow solid; mp 94-95 ${ }^{\circ} \mathrm{C}$ (lit., $\left.{ }^{11} 95-96^{\circ} \mathrm{C}\right) ;[a]_{\mathrm{D}}-294\left(c 0.3, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit}.{ }^{11}\right.$-296.3 (c 0.3, CHCl_{3}); lit., ${ }^{22}$ ent-26a $+299\left(c 1, \mathrm{CHCl}_{3}\right)$; lit., ${ }^{28}$ ent-26a +250 (c 0.3, CHCl_{3})] (Found: C, 46.8; H, 4.4; N, 17.8. Calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}: \mathrm{C}, 46.4 ; \mathrm{H}, 4.5 ; \mathrm{N}, 18.0 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 204$ ($\varepsilon 14800$), 224 (12000) and 368 (14 200); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3240$ ($\mathrm{N}-\mathrm{H}$), 1755 (ester $\mathrm{C}=\mathrm{O}$), 1610 and $1590(\mathrm{C}=\mathrm{C})$ and 1540 and $1320\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52-1.64,1.92-2.04$ and 2.10-2.17 (1,2 and 1 H , each m, 4- and $5-\mathrm{H}_{2}$), 3.06-3.16 (1 H , $\mathrm{m}, 6-\mathrm{H}), 3.64-3.84(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 3-\mathrm{and} 6-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}_{2} \mathrm{C}$), $7.00,8.20$ and 8.43 [each $1 \mathrm{H}, \mathrm{d}(J 9.5)$, dd ($J 2.5$ and 9.5) and d (J 2.5), $\mathrm{C}_{6} \mathrm{H}_{3}$]; $m / z(\mathrm{FAB}) 621\left(\mathrm{M}_{2} \mathrm{H}^{+}, 3 \%\right)$ and 311 $\left(\mathrm{MH}^{+}, 100\right)$. By HPLC, the sample was shown to possess an ee of 98% [using hexanes-propan-2-ol (3:1) as eluent with a flow rate of $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; retention times: 28.6 min for 26a and 60.2 \min for ent-26a].

Method (b).-The aforecited reaction sequence was repeated using the tetrahydropyridazine $\mathbf{1 b}(0.050 \mathrm{~g}, c a .0 .35 \mathrm{mmol})\left\{[a]_{\mathrm{D}}\right.$ $+86(c 0.25, \mathrm{MeOH})\}$. Work-up and chromatography as before gave the title compound $26 a(0.028 \mathrm{~g}, 26 \%),[a]_{\mathrm{D}}-243(c 0.2$, CHCl_{3}), as a yellow syrup. The ${ }^{1} \mathrm{H}$ NMR spectrum of the material matched that of the sample obtained by method (a). By HPLC, the material possessed an ee of 98%.

Method (c).-Sodium cyanoborohydride ($0.103 \mathrm{~g}, 1.6$ $\mathrm{mmol})$ was added to a stirred solution of the salt $27(0.329 \mathrm{~g}$, $1.4 \mathrm{mmol})\left\{[a]_{\mathrm{D}}+62(c \quad 0.3, \mathrm{MeOH})\right\}$ in acetic acid $\left(10 \mathrm{~cm}^{3}\right)$. Removal of the solvent after 18 h left a residue, which [after treatment with $\mathrm{H}_{2} \mathrm{O}$ and evaporation of the solution (3×)] was dissolved in a mixture of water $\left(10 \mathrm{~cm}^{3}\right)$ and ethanol $\left(4 \mathrm{~cm}^{3}\right)$. Sodium hydrogen carbonate (0.50 g) and 2,4-dinitrofluorobenzene ($1.0 \mathrm{~cm}^{3}, 8.0 \mathrm{mmol}$) were added to the stirred solution, which, after 3 h , was washed with diethyl ether ($3 \times$). The aqueous layer was acidified with hydrochloric acid ($c a .6 \mathrm{~mol} \mathrm{dm}^{-3}$) and extracted with diethyl ether ($3 \times$). The organic extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Crystallisation of the residue from ethyl acetate-hexanes gave ($3 S$)-1-($2,4-$ dinitrophenyl)-1,2,3,4,5,6-hexahydropyridazine-3-carboxylic acid 26b $(0.179 \mathrm{~g}, 45 \%)$ as a yellow solid; mp $150-151^{\circ} \mathrm{C}$ (for ent-26b: lit., ${ }^{22} 150.5-151.5^{\circ} \mathrm{C}$; lit. ${ }^{28}{ }^{2} 153-155^{\circ} \mathrm{C}$; lit., ${ }^{29} 151.5-$ $\left.152^{\circ} \mathrm{C}\right) ;[a]_{\mathrm{D}}-321(\mathrm{c} 0.5, \mathrm{MeOH})$ [for ent-26b: lit. ${ }^{22}+341$ (c 1, MeOH) ; lit. ${ }^{28}+307$ (c 0.18 , MeOH); lit., ${ }^{29}+324.6$ (c 1, MeOH)] (Found: C, 44.4; H, 4.4; N, 18.6. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, 44.6; H, 4.1; N, 18.9\%); $\lambda_{\text {max }}$ (EtOH)/nm 205 ($\varepsilon 16700$), 224 (13900) and 370 (16500); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200-2500 \mathrm{br}(\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}), 1720(\operatorname{acid} \mathrm{C}=\mathrm{O}), 1610(\mathrm{C}=\mathrm{C})$ and 1540 and 1340 $\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 1.68-1.88(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 3.43-3.52 and 3.73-3.82 (each $\left.1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $4.18(1 \mathrm{H}$, dt, $J 12.5$ and $3.5,3-\mathrm{H}), 7.42,8.40$ and 8.50 [each $1 \mathrm{H}, \mathrm{d}(J 9.5)$, dd ($J 2.5$ and 9.5) and d $\left.(J 2.5), \mathrm{C}_{6} \mathrm{H}_{3}\right]$ (the other $5-\mathrm{H}$ and the $4-\mathrm{H}_{2}$ signals were obscured by the solvent signals); m / z (FAB) 297 $\left(\mathrm{MH}^{+}, 100 \%\right), 296\left(\mathrm{M}^{+}, 90\right)$ and $154(100)$.

A stream of argon containing diazomethane was bubbled into an ice-cooled solution of the aforecited acid $\mathbf{2 6 b}(0.093 \mathrm{~g}$, 0.3 mmol) in chloroform ($20 \mathrm{~cm}^{3}$). After having been washed with aq. sodium hydrogen carbonate and water, the solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Crystallisation of the residue from ethyl acetate-hexanes gave the title compound 26a $(0.059 \mathrm{~g}, 61 \%)$ as a yellow solid; mp $96-97^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-289$ (c 0.75, CHCl_{3}). The ${ }^{1} \mathrm{H}$ NMR spectrum of the material matched that of the sample obtained by method (a). By HPLC, the material possessed an ee of 95%.
Method (d).-Sodium cyanoborohydride $(0.127 \mathrm{~g}, 2.0$ mmol) was added to a stirred solution of the tetrahydropyridazine $\mathbf{1 c}(0.129 \mathrm{~g}$, ca. 0.9 mmol$)$ in acetic acid $\left(15 \mathrm{~cm}^{3}\right)$. After 3 days, the mixture was concentrated and the product [obtained after treatment with $\mathrm{H}_{2} \mathrm{O}$ and evaporation of the solution (3×)] was transformed, as described in method (c), into the title compound 26a (0.033 g , ca. 13%); mp $95-97^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-231$ (c $0.75, \mathrm{CHCl}_{3}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of the material matched that of the sample obtained by method (a). By HPLC, the material possessed an ee of 99%.

Acknowledgements

We thank the EPSRC (then SERC) and Zeneca Agrochemicals for CASE studentships (to I. H. A. and P. M. C.), the EPSRC for research grant GR/L52246 (to assist in the purchase of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrometer) and the Royal Society for research grant 10606 (to assist in the purchase of the HPLC equipment). We are also grateful to Dr R. Perry for the elemental analyses, Mr K. Walkling for recording the UV and IR spectra, Mr C. Evans and Mr A. P. Morrissey for measuring the VT NMR spectra, and Mr R. Perkins and Dr R. J. Speak (University of Manchester) for the mass spectral determinations. Finally, we are indebted to Professor K. J. Hale (University College, University of London) for providing conditions for the HPLC analyses in advance of publication.

References

1 I. H. Aspinall, P. M. Cowley, G. Mitchell and R. J. Stoodley, J. Chem. Soc., Chem. Commun., 1993, 1179.

2 K. Morimoto, N. Shimada, H. Naganawa, T. Takita and H. Umezawa, J. Antibiot., 1981, 34, 1615.

3 K. Morimoto, N. Shimada, H. Naganawa, T. Takita and H. Umezawa, J. Antibiot., 1982, 35, 378; T. Shiroza, N. Ebisawa, K. Furihata, T. Endõ, H. Seto and N. Õtake, Agric. Biol. Chem., 1982, 46, 1891.
4 U. Gräfe, R. Schlegel, M. Ritzau, W. Ihn, K. Dornberger, C. Stengel, W. F. Fleck, W. Gutsche, A. Härtl and E. F. Paulus, J. Antibiot., 1995, 48, 119.

5 D. J. Pettibone, B. V. Clineschmidt, P. S. Anderson, R. M. Freidinger, G. F. Lundell, L. R. Koupal, C. D. Swartz, J. M. Williamson, M. A. Goetz, O. D. Hensens, J. M. Liesch and J. P. Springer, Endocrinology, 1989, 125, 217.

6 M. Konishi, H. Ohkuma, F. Sakai, T. Tsuno, H. Koshiyama, T. Naito and H. Kawaguchi, J. Am. Chem. Soc., 1981, 103, 1241; E. Arnold and J. Clardy, J. Am. Chem. Soc., 1981, 103, 1243.

7 R. B. Lingham, A. H. M. Hsu, J. A. O'Brien, J. M. Sigmund, M. Sanchez, M. M. Gagliardi, B. K. Heimbuch, O. Genilloud, I. Martin, M. T. Diez, C. F. Hirsch, D. L. Zink, J. M. Liesch, G. E. Koch, S. E. Gartner, G. M. Garrity, N. N. Tsou and G. M. Salituro, J. Antibiot., 1996, 49, 253.

8 P. Hughes and J. Clardy, J. Org. Chem., 1989, 54, 3260.
9 C. Greck, L. Bischoff and J. P. Genêt, Tetrahedron: Asymmetry, 1995, 6, 1989.
10 M. A. Ciufolini and N. Xi, J. Chem. Soc., Chem. Commun., 1994, 1867.

11 Y. Nakamura and C.-g. Shin, Chem. Lett., 1991, 1953; Y. Nakamura, A. Ito and C.-g. Shin, Bull. Chem. Soc. Jpn., 1994, 67, 2151.

12 U. Schmidt and B. Riedl, J. Chem. Soc., Chem. Commun., 1992, 1186.

13 R. C. Gupta, C. M. Raynor, R. J. Stoodley, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1988, 1773; R. C. Gupta, D. S. Larsen, R. J. Stoodley, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1989, 739.
14 D. S. Larsen and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1989, 1841.

15 D. S. Larsen and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1990, 1339.

16 J. Maddaluno and J. d'Angelo, Tetrahedron Lett., 1983, 24, 895.

17 A. Lubineau and Y. Queneau, J. Org. Chem., 1987, 52, 1001.
18 J. C. Breliere and J. M. Lehn, Chem. Commun., 1965, 426.
19 B. Price, I. O. Sutherland and F. G. Williamson, Tetrahedron, 1966, 22, 3477.
20 J. Fiandor, M. T. García-López, F. G. de las Heras and P. P. MéndezCastrillón, Synthesis, 1985, 1121.
21 R. Delaby, R. Damiens and M. Robba, Compt. Rend. Hebd. Séances Acad. Sci., 1958, 247, 1739.
22 K. J. Hale, J. Cai, V. Delisser, S. Manaviazar, S. A. Peak, G. S. Bhatia, T. C. Collins and N. Jogiya, Tetrahedron, 1996, 52, 1047.
23 D. L. Boger and S. N. Weinreb, Hetero Diels-Alder Methodology in Organic Synthesis, Academic Press, New York, 1987.
24 D. Enders, O. Meyer, G. Raabe and J. Runsink, Synthesis, 1994, 66; J. Barluenga, M. Tomás, A. Suárez-Sobrino and L. A. López, J. Chem. Soc., Chem. Commun., 1995, 1785; W. Adam, M. Güthlein, E.-M. Peters, K. Peters and T. Wirth, J. Am. Chem. Soc., 1998, 120, 4091.

25 B. Beagley, D. S. Larsen, R. G. Pritchard and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1990, 3113.

26 Vogel's Textbook of Practical Organic Chemistry, revised by B. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith and A. R. Tatchell, Longman, London, 4th edn., 1981, p. 289.
27 R. L. Letsinger and R. Lasco, J. Org. Chem., 1956, 21, 812.
28 K. Bevan, J. S. Davies, C. H. Hassall. R. B. Morton and D. A. S. Phillips, J. Chem. Soc. C, 1971, 514.
29 C. H. Hassall, W. H. Johnson and C. J. Theobald, J. Chem. Soc., Perkin Trans. 1, 1979, 1451.

Paper 9/05302F

[^0]: \dagger For preliminary communication, see ref. 1.

[^1]: \ddagger Some decomposition occurred (as evidenced by the production of $\mathbf{2 2}$) when the reaction was conducted in hot toluene ($c a .80^{\circ} \mathrm{C}$; 3 days).
 § Similar temperature-dependent effects have been noted with simple 1,2-bis(methoxycarbonyl)-1,2,3,4,5,6-hexahydropyridazines; see ref. 19 - $[a]_{\mathrm{D}}$-Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

